
Java - Day1

Basics of java

Data Types and Operators

Control Structures

Class and Objects

• Class: A class is a blueprint or prototype of a
real world entity.

• It defines variables and methods(functions)
common to all objects of that class.

• Object: It is a specimen or representative of a
class.

• It models real world objects you find in
everyday life.

Example: Objects and Classes

Features of OOP

• Abstraction : Extracting the essential information
and hiding irrelevant details.

• Encapsulation : The process of binding code and
data together in the form of a capsule.

• Inheritance: The feature by which a class acquires
properties and functionalities of another class.

• Polymorphism: The feature that allows the same
interface to be used for a general set of action.

Features of Java

• Object Oriented

• Simple - Compared to earlier languages like C++

• Robust- Errors are corrected while writing code ,
well before run time

• Architecture Neutral/ Portable – Java code
complied on Windows machine can be run on
other OS without recompilation

• Secure

• Multithreading

Java Virtual Machine (JVM) (1 of 2)

• Source code is stored in a .java file.

• Java Compiler compiles .java file into .class file
which is a bytecode.

• Bytecode is interpreted by JVM

• JVM is like a processor(virtual machine)
implemented with software.

JVM (2 of 2)

• Interface of a JVM to a .class file is same ,
irrespective of underlying OS- This makes
platform independence easier

Hello World!!

• public class FirstProgram {

• public static void main(String[] args)

• {

• System.out.println(“Hello World!!”);

• }

• }

• // save as FirstProgram.java

• // this is source code

Compilation and Execution

Step 1: Java Program(.java)

Step 2: Java Compiler (javac)

Step 3: ByteCode (.class)

Step 4:

Interpreter Interpreter Interpreter

Windows Linux Mac

Best Practices

• One .java file should have one public class and
other default classes , if any.

• Name of file must be same as name of class.

• Stand alone java program must have public
static void main defined.

 - it is the starting point of program

- not all classes need main method

• Must follow indentation and coding standards

Data Types in Java

• Java is a strongly typed language. It means
every declared variable must have a declared
type.

• Two Types:

- Primitive Types

- Reference Types

Primitive Data types

• Data Types Type Storage
Requirement

Integer byte 1 byte

short 2 bytes

int 4 bytes

long 8 bytes

Floating
point

Float 4 bytes

double 8 bytes

Textual char 2 bytes

Logical boolean 1 byte (true/false)

Reference Types

• A reference variable is required to access an
object of a class.

• We create an object of a class using

 new classname()

This object is accessed by reference variable.

For eg.,

Animal a=new animal();

a.eat(); // a is reference variable, which refers to
animal object and accesses eat() method.

Comments in java

• Single Line comments:

// this is a comment

• Multiline Comments:

/* this is a

Multiline

Comment */

Variables

• Variables must have a data type:

int count;

int max=100;

• Variables can be declared anywhere in
program. Declare it as and when required.

• If a variable is used without initializing it, the
compiler will show an error.

Variable declaration and assignment

int count; // declaration

count=10 // assignment or initialization

int num=20; // declaration and assignment in
same step

*** variable must have a type and a name.

What is the output of below
program?....

Typecasting of primitive data types - 1

• Automatic or implicit type conversion:

 - variable of smaller capacity can be assigned
to variable of bigger capacity

 int i=10;

 double d;

 d=I;

Typecasting of primitive data types - 2

• Explicit Type conversion

• Variable of bigger capacity is assigned to a
variable of smaller capacity with a probable
loss of data using type cast operator:
 double d=10;

 int i;

i=(int)d;

Access Modifiers: Private and Public

• Data members are always kept Private.
 - It is accessible only within the class

• The method which expose the behaviour of

object are kept public.
 - We can have other helper methods which are private

• Key features of object oriented programs
 - encapsulation: Binding of code and data together.
 -State is hidden and behaviour is exposed to external

world.

Variables and their scope ..1

• Instance Variables (Member variables)

 - declared inside a class

 -outside any method or constructor

 -Lifetime depends on lifetime of object

• Local Variables

 - declared inside a method

 - method parameters are also local variables

 -lifetime ends when program call ends

Variables and their scope ..2

Variables and their scope ..3

Operators

• Arithmetic Operators: + - * /

• + addition

• - subtraction

• * multiplication

• / integer division if both operands are integers
else floating point division

• Integer Remainder is denoted by % (modulus).

• 17/2 is 8, 17%2 is 1, 17.0/2 is 8.5

Increment and Decrement Operators

• ++ adds 1 to the current value of variable

• -- subtracts 1 from the current value of
variable.

• Postfix and prefix notations:

int m=7;

int n=7;

int a=2*++m; //a=16, m=8

int b=2*n++; //b=14,n=8

Relational and Boolean Operators

• Equality: ==

• Inequality: !=

• Less than <

• Less than or equals to <=

• Greater than >

• Greater than or equals to >=

• Logical And - &&

• Logical Or - ||

Arrays in Java ..1

• It is a data structure with ordered collection of
a fixed number of homogeneous data
elements.

• Size of an array is fixed.

• Array can be of primitive data types of
reference variable type.

• All elements in an array must be of same data
type.

Arrays in Java ..2

• Declaring array variables

 <element type> [] <array name>;

 Or

 <element type> <array name>[];

• For example:

 int intArray[];

 Animal[] landAnimals, waterAnimals ;

Arrays in Java ..2

• Constructing an Array

 <array name>= new <elementType>[<No of
elements>];

For Example:

 int intArray[];

intArray=new int[10];

• Combined Declaration and construction:

 int intArray[]=new int[10];

Arrays in Java ..3

• Declaring and Initializing an array

 int intArray[]={1,2,3,4,5};

 char charArray[]= { ‘a’, ‘s’, ‘ d’ };

 Animal animalArray[]= {new Animal(), new
Animal () };

Arrays in Java ..4

• Java does not allow to extend its boundaries.

• If x is reference to an array, then

 x.length

 will give length of array

Control Structures in Java

• Conditional Structures:

– if Statement

– if else

– if Elseif

– if Elseif Else

– Switch Case

 • Looping Structures:

• For loop:
 for(initialization; condition; increment)
 { // statements
 }

 for(int i=0; i<=10; i++)
 {
 System.out.println(i);
 }

Exercise:

• Write a program to print even numbers
between 0 to 25 considering 0 as even
number.

• Write a program to print average of int array:

 int intArray[]={5,10,15,20,25,30}

• Write a program to print fibonacci series(0 1 1
2 3 5 8 13 21 34 …).

While

• While Loop: It executes a statement (or a
block) while a condition is true.

 While (condition) statement;

Loop will never execute if condition is false.

Do - while

• If you wish to make sure that block executes at
least once, then use do-while loop.

 do

 {

 // statements

 }

while (condition);

Multiple Selection: Switch Statement

• Execution starts at case label that matches
with the input/selected value until the next
break or end of switch.

• If none of case matches then default is
executed , if present.

• Scanner in=new Scanner(system.in);
• System.out.println (“select option 1, 2 or 3”);
• int choice=in.nextInt();
• switch(choice)
• {
• case 1:
• …
• break;
• case 2:
• …
• break;
• ….
• default:
• …
• break;
• }

